

TechnischeR PhysikerIn

Im BIS anzeigen

Haupttätigkeiten

Technische PhysikerInnen übertragen die Ergebnisse der theoretischen Physik in die praktische bzw. industrielle Anwendung, wobei ihr Tätigkeitsfeld (Elektrotechnik, Chemie, Metallurgie und Datenverarbeitung) interdisziplinäre Zusammenarbeit erfordert.

Einkommen

Technische PhysikerInnen verdienen ab 3.340 bis 4.350 Euro brutto pro Monat.

Akademischer Beruf: 3.340 bis 4.350 Euro brutto

Beschäftigungsmöglichkeiten

Technische PhysikerInnen sind insbesondere in Unternehmen der Branchen Elektrotechnik/Elektonik, Medizintechnik und Kommunikationstechnik und in der Grundstoffindustrie (Metall, Chemie, Papier) tätig.

Aktuelle Stellenangebote

.... in der online-Stellenvermittlung des AMS (eJob-Room): 3 🔀 zum AMS-eJob-Room

In Inseraten gefragte berufliche Kompetenzen

- Design von Batteriespeichern
- Elektronikkenntnisse
- Grundlagenforschung
- Medizinische Physik
- Messdatenauswertung
- Messdatenerfassung
- Projektmanagement im Wissenschafts- und Forschungsbereich
- Qualitätskontrolle
- Simulation
- Statistikkenntnisse

Weitere berufliche Kompetenzen

Berufliche Basiskompetenzen

- Kenntnis wissenschaftlicher Arbeitsmethoden
- Labortechnik
- · Technische Physik

Fachliche berufliche Kompetenzen

- Chemiekenntnisse
 - o Methoden der Analytischen Chemie (z. B. Photoelektronenspektroskopie)
- Energietechnik-Kenntnisse
 - Kraftwerkstechnik (z. B. Gas- und Dampfkraftwerkstechnik)
 - Energiespeicherung (z. B. Wasserstoffspeicherung)
 - Energieerzeugung (z. B. Herstellung von E-Fuels)
- Feinwerktechnik-Kenntnisse
 - Technische Optik
- Kenntnis wissenschaftlicher Arbeitsmethoden
 - Projektmanagement im Wissenschafts- und Forschungsbereich
 - o Wissenschaftliche Recherche (z. B. Recherche in Datenbanken)
- Kunststoffherstellungskenntnisse

- Kunststofftechnik
- Kunststoffverarbeitungskenntnisse
- · Labormethodenkenntnisse
 - Labortechnik
- Maschinenbaukenntnisse
 - Bau von Kraftmaschinen (z. B. Bau von Verbrennungsmotoren)
 - o Fluidtechnik
- Mess-, Steuerungs- und Regelungstechnik
 - Durchführung von Messungen und Tests
 - Messtechnik
- Programmiersprachen-Kenntnisse
 - Compiler Programmiersprachen (z. B. C, C++)
- Rechtskenntnisse
 - Völkerrecht (z. B. Weltraumrecht)
- Softwareentwicklungskenntnisse
 - Spezialgebiete Softwareentwicklung (z. B. Programmierung von Simulationssoftware)
- Wissenschaftliches Fachwissen Naturwissenschaften
 - Physik (z. B. Halbleiterphysik, Statistische Physik und Thermodynamik, Optik, Kernphysik, Interdisziplinäre Physik, Elektrotechnische Berechnungsmethoden, Medizinische Physik, Physikalische Simulation und Berechnungsmethoden)
 - o Chemie (Wissenschaft) (z. B. Allgemeine Chemie, Stöchiometrie)
- Wissenschaftliches Fachwissen Technik und Formalwissenschaften
 - Formalwissenschaften (z. B. Mathematik)
 - o Ingenieurwissenschaften (z. B. Physikalische Grundlagen des Maschinenbaus, Technische Physik)

Überfachliche berufliche Kompetenzen

- Analytische Fähigkeiten
- Lernbereitschaft

Digitale Kompetenzen nach DigComp

1 Grundlegend			2 Selbst	tständig	3 Fortge	schritten	4 Hoch spezialisiert	

Beschreibung: Technische PhysikerInnen sind in der Lage berufsspezifische digitale Anwendungen in der Planung und Entwicklung sowie in der Kommunikation, Zusammenarbeit, Recherche und Dokumentation routiniert zu nutzen. Sie können standardisierte Lösungen anwenden, aber auch neue Lösungsansätze entwickeln. Sie sind in der Lage, selbstständig digitale Inhalte zu erstellen und zu bearbeiten sowie Fehler zu beheben. Außerdem kennen sie die betrieblichen Datensicherheitsvorschriften, können diese einhalten und sorgen in ihrem Verantwortungsbereich für die Einhaltung und Umsetzung dieser Regeln.

Detailinfos zu den digitalen Kompetenzen

Kompetenzbereich	Kompetenzstufe(n) von bis						n)		Beschreibung	
0 - Grundlagen, Zugang und digitales Verständnis	1	2	3	4	5	6	7	8	Technische PhysikerInnen müssen sowohl allgemeine als auch berufsspezifische digitale Anwendungen (z. B. 3D-Druck und 3D-Simulation, Mikroelektronik, Numerische Simulation, Photonik, Sensorik, Speicherprogrammierbare Steuerung, Vernetzte Labor- und Analyse-Geräte) selbstständig und sicher anwenden können sowie auch komplexe und unvorhergesehene Aufgaben flexibel lösen können.	
1 - Umgang mit Informationen und Daten	1	2	3	4	5	6	7	8	Technische PhysikerInnen müssen umfassende Daten und Informationen recherchieren, vergleichen, beurteilen und bewerten können, aus den gewonnenen Daten selbstständig Konzepte und Empfehlungen ableiten und in ihrer Arbeit umsetzen.	
2 - Kommunikation, Interaktion und Zusammenarbeit	1	2	3	4	5	6	7	8	Technische PhysikerInnen verwenden digitale Anwendungen zur Kommunikation, Zusammenarbeit und Dokumentation mit KollegInnen auf fortgeschrittenem Niveau.	
3 - Kreation, Produktion und Publikation	1	2	3	4	5	6	7	8	Technische PhysikerInnen müssen digitale Informationen und Daten selbstständig erfassen und in bestehende digitale Anwendungen einpflegen können. Sie erstellen neue digitale Inhalte beispielsweise in Form von Auswertungen, Analysen oder Berichten.	
4 - Sicherheit und nachhaltige Ressourcennutzung	1	2	3	4	5	6	7	8	Technische PhysikerInnen sind sich der Bedeutung des Datenschutzes und der Datensicherheit bewusst, kennen die für ihren Arbeitsbereich relevanten Regeln, halten sie ein und veranlassen aktiv Maßnahmen, wenn sie mögliche Sicherheitslücken beispielsweise im Umgang mit Daten entdecken.	
5 - Problemlösung, Innovation und Weiterlernen	1	2	3	4	5	6	7	8	Technische PhysikerInnen entwickeln selbstständig und im Team digitale Lösungen für komplexe berufsspezifische Fragestellungen. Sie erkennen Probleme und Fehlerquellen digitaler Anwendungen und arbeiten an deren Behebung mit. Sie erkennen aber auch eigene digitale Kompetenzlücken und können diese beheben.	

Ausbildung, Zertifikate, Weiterbildung

Typische Qualifikationsniveaus

• Akademischer Beruf

Ausbildung

Hochschulstudien nQ?" nQ?"

- Naturwissenschaften
 - o Physik

Weiterbildung

Fachliche Weiterbildung Vertiefung

- Computer Aided Engineering
- Fluidtechnik
- Halbleitertechnologie
- Mechatronik
- Medizinphysik
- Messtechnik
- Nanotechnologie
- Simulation
- Technische Thermodynamik
- Verfahrenstechnik
- Weltraumrecht

Fachliche Weiterbildung Aufstiegsperspektiven

- Spezielle Aus- und Weiterbildungslehrgänge Elektrotechnik, Informationstechnologie, Mechatronik
- Projektmanagement-Ausbildung
- · Ziviltechniker-Prüfung
- Hochschulstudien Mechatronik
- Hochschulstudien Verfahrenstechnik
- Spezielle Aus- und Weiterbildungslehrgänge Fachspezifische Universitäts- und Fachhochschullehrgänge

Bereichsübergreifende Weiterbildung

- Datensicherheit
- Fremdsprachen
- Laborsoftware
- Projektmanagement
- Qualitätsmanagement

Weiterbildungsveranstalter

- Betriebsinterne Schulungen
- Austrian Institute of Technology (AIT)
- Österreichische Akademie der Wissenschaften 🔀
- Erwin Schrödinger International Institute for Mathematics and Physics (ESI)
- Fachmesse- und Tagungsveranstalter
- Erwachsenenbildungseinrichtungen und Online-Lernplattformen
- Fachhochschulen
- Universitäten

Deutschkenntnisse nach GERS

B2 Gute bis C1 Sehr gute Deutschkenntnisse

Sie arbeiten vor allem wissenschaftlich in Forschung und Entwicklung, zum Teil auch in der Lehre. Sie kommunizieren die Ergebnisse ihrer Arbeit schriftlich und mündlich. Ihre Tätigkeit ist stärker naturwissenschaftlich geprägt, sprachliche Anforderungen stehen nicht so im Vordergrund wie in anderen wissenschaftlichen Bereichen. Eine sehr gute Sprachbeherrschung ist trotzdem vielfach unerlässlich. Hinweis: An den meisten österreichischen Universitäten wird für die Zulassung zu einem Bachelorstudium das Sprachniveau C1 vorausgesetzt.

Weitere Berufsinfos

Selbstständigkeit

Freier Beruf:

- IngenieurkonsulentIn
- Patentanwalt/-anwältin

Reglementiertes Gewerbe:

- Ingenieurbüros (Beratende IngenieurInnen)
- Kunststoffverarbeitung (Handwerk)
- Oberflächentechnik; Metalldesign (verbundenes Handwerk)

Der Beruf kann freiberuflich ausgeübt werden.

Berufsspezialisierungen

AerodynamikerIn

AkustikerIn AkustikphysikerIn

AmtssachverständigeR für Strahlenschutz StrahlenschutzbeauftragteR

AstrophysikerIn WeltraumforscherIn

AtomkraftanlageningenieurIn AtomphysikerIn AtomreaktoroperateurIn AtomtechnikerIn KernphysikerIn KerntechnikerIn

NuklearantriebsingenieurIn NukleartechnikerIn

ReaktoroperateurIn

ReaktortechnikerIn

BestrahlungstechnikerIn

ElektronikphysikerIn

ElektrophysikerIn

FestkörperphysikerIn

FließkundlerIn

HeißzellentechnikerIn

IndustriephysikerIn

IngenieurkonsulentIn für Technische Physik IngenieurkonsulentIn für Weltraumwissenschaften ZivilingenieurIn für Technische Physik

IsotopentechnikerIn

LaboratoriumstechnikerIn für Physik

LaborleiterIn für Physik NanotechnologieingenieurIn

LichtphysikerIn LichtwissenschafterIn

MetallphysikerIn

MolekularphysikerIn

OptikphysikerIn

RadiumtechnikerIn

BauphysikerIn

ThermikerIn ThermodynamikerIn ThermophysikerIn

Engineer Tribology (m/w)
Tribologe/Tribologin
TribotechnikerIn

Nanotechnologe/-technologin

Verwandte Berufe

- Forschungs- und EntwicklungstechnikerIn
- MedizinphysikerIn [§]
- PhysikerIn
- ProjekttechnikerIn
- WerkstofftechnikerIn

Zuordnung zu BIS-Berufsbereichen und -obergruppen Wissenschaft, Bildung, Forschung und Entwicklung

• Naturwissenschaften, Lebenswissenschaften

Zuordnung zu AMS-Berufssystematik (Sechssteller)

- 636101 Technisch(er)e Physiker/in (DI)
- 665617 Strahlenschutzbeauftragt(er)e

Informationen im Berufslexikon

- 🗹 AkustikerIn (Uni/FH/PH)
- 🗹 AkustikphysikerIn (Uni/FH/PH)
- Z StrahlenschutzbeauftragteR (Kurz-/Spezialausbildung)
- WeltraumforscherIn (Uni/FH/PH)

Informationen im Ausbildungskompass

• Z TechnischeR PhysikerIn

Dieses Berufsprofil wurde aktualisiert am 31. Oktober 2025.